64 research outputs found

    Detection and Characterization of Porcine Sapelovirus in Italian Pig Farms

    Get PDF
    Porcine sapelovirus (PSV) belongs to the genus Sapelovirus of the family Picornaviridae. PSV infects pigs asymptomatically, but it can also cause severe neurologic, enteric, and respiratory symptoms or reproductive failure. Sapelovirus infections have been reported worldwide in pigs. The objective of this study was to investigate the presence and the prevalence of PSV in Italian swine farms in animals of different ages to clarify the occurrence of the infection and the genetic characteristics of circulating strains. In the present study, 92 pools of fecal samples, collected from pigs across three farms, were analyzed by Reverse Transcriptase-polymerase Chain Reaction-PCR (RT-PCR). Fecal pools from young growers (63/64) were found positive for Sapelovirus in all farms while detection in sows (4/28) was observed in only one farm. Phylogenetic analyses of the 19 partial capsid protein nucleotide sequences (VP1) (6\u20137 each farm) enable the classification of the virus sequences into three distinct clades and highlighted the high heterogeneity within one farm. The whole genome sequence obtained from one strain showed the highest correlation with the Italian strain detected in 2015. The study adds novel information about the circulation and heterogeneity of PSV strains in Italy and considering the movement of pigs across Europe would also be informative for other countries

    Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in <i>Drosophila melanogaster</i>

    Get PDF
    <p>In vertebrates, TFEB (transcription factor EB) and MITF (microphthalmia-associated transcription factor) family of basic Helix-Loop-Helix (bHLH) transcription factors regulates both lysosomal function and organ development. However, it is not clear whether these 2 processes are interconnected. Here, we show that Mitf, the single TFEB and MITF ortholog in <i>Drosophila</i>, controls expression of vacuolar-type H<sup>+</sup>-ATPase pump (V-ATPase) subunits. Remarkably, we also find that expression of <i>Vha16-1</i> and <i>Vha13</i>, encoding 2 key components of V-ATPase, is patterned in the wing imaginal disc. In particular, <i>Vha16-1</i> expression follows differentiation of proneural regions of the disc. These regions, which will form sensory organs in the adult, appear to possess a distinctive endolysosomal compartment and Notch (N) localization. Modulation of Mitf activity in the disc in vivo alters endolysosomal function and disrupts proneural patterning. Similar to our findings in <i>Drosophila</i>, in human breast epithelial cells we observe that impairment of the <i>Vha16-1</i> human ortholog <i>ATP6V0C</i> changes the size and function of the endolysosomal compartment and that depletion of TFEB reduces ligand-independent N signaling activity. Our data suggest that lysosomal-associated functions regulated by the TFEB-V-ATPase axis might play a conserved role in shaping cell fate.</p

    First Pandemic H1N1 Outbreak from a Pig Farm in Italy

    Get PDF
    The first outbreak of the pandemic H1N1 virus in a swine breeder farm in Italy in November 2009 was reported. Clinical signs observed in sows included fever, depression, anorexia and agalactia, while in piglets diarrhoea and weight loss. The morbidity in sows was approximately 30% and the accumulated mortality rate was similar with those usually reported in piggeries (<10%). Virus was isolated from piglets (A/Sw/It/290271/09) and the sequencing of the whole genome was then performed. Comparison with all (H1N1)v sequences available in GenBank shows A/Sw/It/290271/09 three unique amino-acid (aa) changes in PB2 (S405T), PB1 (K386R) and PA (K256Q), not yet associated to any well characterized phenotype markers of Influenza viruses. All eight aa at positions representing the so-called species specific swine-human signatures, found in both swine and in the pandemic H1N1v, are also present. The M2 protein displays the C55F and the PA protein the S409N substitutions, both corresponding to enhanced transmission phenotype markers. Phylogenetic analysis showed that the virus was genetically related to the pandemic H1N1 virus. In addition, serological samples were collected from 40 sows, of which 20 resulted positive to the pandemic H1N1 virus by HI test proving a virus circulation in the farm

    Assessment of copy number variations in 120 patients with Poland syndrome

    Get PDF
    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown

    Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies

    Get PDF
    We previously reported that autosomal recessive demyelinating Charcot-Marie-Tooth (CMT) type 4B1 neuropathy with myelin outfoldings is caused by loss of MTMR2 (Myotubularin-related 2) in humans, and we created a faithful mouse model of the disease. MTMR2 dephosphorylates both PtdIns3P and PtdIns(3,5)P2, thereby regulating membrane trafficking. However, the function of MTMR2 and the role of the MTMR2 phospholipid phosphatase activity in vivo in the nerve still remain to be assessed. Mutations in FIG4 are associated with CMT4J neuropathy characterized by both axonal and myelin damage in peripheral nerve. Loss of Fig4 function in the plt (pale tremor) mouse produces spongiform degeneration of the brain and peripheral neuropathy. Since FIG4 has a role in generation of PtdIns(3,5)P2 and MTMR2 catalyzes its dephosphorylation, these two phosphatases might be expected to have opposite effects in the control of PtdIns(3,5)P2 homeostasis and their mutations might have compensatory effects in vivo. To explore the role of the MTMR2 phospholipid phosphatase activity in vivo, we generated and characterized the Mtmr2/Fig4 double null mutant mice. Here we provide strong evidence that Mtmr2 and Fig4 functionally interact in both Schwann cells and neurons, and we reveal for the first time a role of Mtmr2 in neurons in vivo. Our results also suggest that imbalance of PtdIns(3,5)P2 is at the basis of altered longitudinal myelin growth and of myelin outfolding formation. Reduction of Fig4 by null heterozygosity and downregulation of PIKfyve both rescue Mtmr2-null myelin outfoldings in vivo and in vitro

    The discovery of a z = 0.7092 OH megamaser with the MIGHTEE survey

    Get PDF
    We present the discovery of the most distant OH megamaser (OHM) to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of z = 0.7092, the system has strong emission in both the 1665 MHz (L ≈ 2500 L⊙) and 1667 MHz (L ≈ 4.5 × 104 L⊙) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity v ∼ 330 km s−1 with respect to the systemic velocity. The host galaxy has a stellar mass of M⋆ = 2.95 × 1010 M⊙ and a star formation rate of SFR = 371 M⊙ yr−1, placing it ∼1.5 dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultraluminous infrared galaxy. Alongside the optical imaging data, which exhibit evidence for a tidal tail, this suggests that the OHM arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of ∼2.5, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy’s optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    Fashion Futuring : rethinking sustainable fashion design

    No full text
    The paper investigates the possibility to re-imagine fashion design in a sustainable direction and to conceive alternatives to the current unsustainable growth of which fashion has been a carrier in recent decades. The paper relies on the emerging design-theory-based concept of “futuring”, which concerns ecology, sustainability, and social innovation. It sets a methodological framework that develops eco-fashion beyond environmental sustainability, and slow fashion beyond the critique of the acceleration of fashion production and consumption. The proposed framework leads into the four directives of Do it Yourself; Future Artisans; Digital Manufacturing; and Industrial Experimentation and allows to encompass initiatives ranging from circular economies to participatory design models and open design. Future research on Italian case studies will test the validity of this framework. The research hypothesis is that there is an Italian design laboratory in fashion, able to prefigure new material cultures and shape the ways we live and interact
    corecore